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THEORY OF GROUND-WAVE PROPAGATION ACROSS
A ROUGH SEA AT DEKAMETER WAVELENGTHS

by

Donald E., Barrick

\

ABSTRACT

The effect of sea state on ground-wave propagation across the ocean is
computed in the HF and VHF region. 7The history and present understanding of ground-
wave propagation is briefly reviewed, especially as concerns the influence of
roughness, The approach of the analysis here is to derive an effective surface
impedance at grazing which includes the effects of roughness. To do this, the statis-
tical boundary perturbation approach of Rice is applied to the sea surface, which is
"slightly rough'" at HF/VHF. 1In addition, the Leontovich (or impedance) boundary
condition is employed because ocean water is a good (but not perfect) conductor
at these frequencies. The analysis shows that the total effective impedance at the
surface can be expressed as two terms: (i) the impedance of a perfectly smooth sea
water surface at grazing, and (ii) a second term accounting for roughness. The latter

is obtained from the ocean wave-height spectrum,

The report examines two height-spectrum models for wind-driven ocean waves:
a directional Neumann-Pierson model and an isotropic Phillips spectrum., The effective
surface impedance is calculated for these models. This impedance is then used to
compute the ground-wave transmission loss across the sea., Graphs are shown for a
variety of frequencies, ranges, sea states, and receiver heights, Examples, in which

these curves are used in communications problems are solved.

A bibliography of ground-wave (open literature) publications is included
as an Appendix. The articles are arranged therein chronologically, by decades, and

then alphebetically, by author,
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I. INTRODUCTION

[1]

analysis in
{2-4)

Interest in ground-wave propagation began with Sommerfeld's
1909. Widespread utilization of these results, however, came with Norton's papers

which reduced Sommerfeld's complex expressions to graphs suitable for engineering

(5]

applications and extended the results to spherical surfaces Since then, many

investigators have made contributions which include a variety of deterministic surface
geometries, including layers, surface-step discontinuities, propagation beyond hills
(of given geometrical shape), knife-edge discontinuities, a layered atmosphere, and

abrupt changes in surface properties (i.e., a shoreline model). For several recent

(6]

reviews of the pertinent ltferature, one should consult the articles by Wait s

(7] [8] 0ol 9] [10] [11] *

Feinberg Bremmer , Goubau , King , and Wait

With few exceptions, all of the articles on ground-wave propagation have
treated the earth surface as smooth, either planar or spherical. Techniques have

been developed for treating ground-wave diffraction by deterministic shapes in given

r
[13] [11], a surface step‘ll’l4],

)[7, 15-17]'

locations, such as a parabolic-shaped hill , a knife-edge

or a linear interface between two surface media (modeling a coastline All
of these obstacles, however, are handled deterministically, i.e., their shape and
locations are specified, and the exact expression is sought for their diffraction
effect. None of these surface irregularities, either singly or in combination, can
give a really satisfying model for a statistically rough surface, such as the ocean.
Hence, persons interested in grbund-wave propagation across the sea have all used

Norton's (or similar) techniques and assumed the sea surface to be perfectly smooth.
4
4
Yet it has been known for years that a slight corrugation on an otherwise per-

fectly conducting surface has a substantial effect on a wave propagating across it[le];

in particular, thereactive portion of the surface impedance is enhanced. Thus there is

good reason to believe that in the HF and VHF regions, where ocean-wave heights can
be a significant percent of a wavelength, the roughness will play an important role

and must not be neglected. With a lack of any theoretical guidelines, measurements

(19]

carried out in the past have proved to be relatively meaningless, especially since

*A novice to the subject would do well to consult one of these reviews, with possibly
a preliminary persual of a sound tutorial treatment, such as is contained in Jordan's
textbook[12] (Chapter 16). This suggestion is made because hundreds of articles have
been published on the subject, and any attempt to be comprehensive is bound to be
quite voluminous. Rather, the reader may refer to the Appendix for a chronological
bibliography on most of the important contributions on ground waves.
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no attempts ware made to ascertain the statistics of the surface (i.e., the sea state)
at the time of the measuremants, Since an ever-increasing number of systems (both
communication and radar) will involve propagation over the sea, an effort to treat

the effect of surface roughness in a quantitative manner appears in order.

There have been a handful of attempts to deal with roughness in gtound-wavc'
propagation quantitatively. Fetnberglzo] in an English article showed already in
1944 that roughness produces an increass in the effective surface impedance, and
derived an integral for this average impedance. He obtained this result from the
integral equation for the fields obtained using Green's theorem; in this respect,
Feinberg's approach to the problem 1s similar to others who have used integral
aquations, e.g., Hufford[21] and Kingllo]. While Feinberg initially applied the
Lsontovich boundary condition, he later presents the effective surface impedance term
contributed by the roughness; the latter contains no dependence upon the surface
material properties, i.e., it is strictly valid only in the limit of a perfectly
conducting surface, This useful relationship, nonethaless, apparently went unnoticed
and unapplied in the West, and even in the Soviet literature it wae only repeated
a couple of :imnl‘zzl. To the best of our knowledge, no one in either ccuntry has
ever used it to study propagation acrosa a rough ses. Bxcmnorla] later notes
Feinberg's result, and repeats it.

Rice, on the other hand, studied very thoroughly the problem of reflection
of electromsgnetic waves from a slightly rough* lurfuc.lzs]. Using the boundary
conditions along with Maxwell's aquations, he solves the problem using & classical
perturbation approach, 1n his Section 6, he briefly considers propagation over a
perfactly conducting rough surface for vertical polarization. His result is identical
to Feinberg'’s 1f one makes the connection between his affective horizontal propagation
constant and Feinberg's surface impedance. While Rice's classical paper has baen
quoted and applied often for acatter problems, this important result for surface-wave
propagation has also gone unnoticed,

Hlltlzal considers propagarion along s perfectly conducting surface having
a random distribution ¢f hemispheric bosses superposed. These tosses, all of the same
size, are small compared to a wavelength but their spacing is large compared to their
radius; the work is based upon multipls scattering techniques derived by Tv::akylzsl.

*"S1ightly rough" is the accepted term for surfaces whose roughness height is less
than 8 wavelength., The sea at HP and much of VHF falls into this category,
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The interpretation of these results by Wait constitutes possibly thae first attempt ro
consider the effect of a random roughness on the propagation of surface waves. It is
obvious, however, that quantitative comparison of such a model with the sea is not

[26]

impedance, but unfortunately he does not consider in sufficient detail the pathological

promising. Senior analyzes the influence of a slight roughness on the surface

case here of grazing incidence; his results are mainly applicable at higher angles of

incidence.

11, DEFINITIONS AND BACKGROUND

Before proceeding further, it is necessary to define terms to be used here,
including ground wave and surface wave. The definition employed here ia that of
Nortonlz-s’lzl. The ground wave is the total field observed at a point in space due
to a radiating source a finitc distance away, excluding any component reflected from
the ilonosphere or other discontinuities in the upper atmosphere; these latter
components are termed sky waves and will not be treated here, The ground wave is
then broken down further into a space wave and a surface wave., The space wave, if it
exists, consists of the direct ray and that reflected from the earth; these are
predicted by standard ray optics and exist only when the observation point is above
the horizon, The surface wave is then the remaining field in the ground wave after
the space wave has been subtracted off, Persons using this definition have alternately

referred to the latter as the "Norton surface wave",

It is useful at this point to review very briefly the controversy over the
definition of surface waves, While we realize that the reader of this report is
little interested in a blow-by-blow description of the quarrel, it is nonetheless
necessary because the analysis that follows employs some of the concepts subscribed
to by both camps, The controversy involves more than a mere definition or terminology;

it i3 a question of the nature of the fields at the surface themselves.

Sommerfeld's solution is based upon a representation of the radiation frow
a dipole by a sumnation (i,e,, an integral) of plane waves. This integral, along with
similar representations for the reflected and transmitted fields, sazisfy Maxwell's
equations and the boundary conditions at the surface. The resulting expression for the

total field above the surface 13 then expanded sasymptotically (valid where distance from
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the source is large in terms of wavelength). When the terms appearing in this asymp-
totic representation are interpreted physically, the "space wave" terms described above
stand out; hence, it was natural to call the remainder of the solution a “surface
wave”, As one approaches grazing propagation on a smooth planar surface of finite
conductivity, the space wave vanishes as it should due to the cancellatioa of the
direct and reflected waves; thus any power received is due to propagation via this
"surface wave", Here, however, one can encounter difficulties; one at first aight ex-
pect that this "surface wave' alone should saLisfy Maxwell's equations and the boundary
conditions; it does not, This fact has caused doubt in the minds of some, who felt that
the entire axpansion was somehow erroneous or inadequate, 1t should hsve been no
particular cause for alarm, however. Many popular asymptotic expansions of scattered
and diffracted fields fail these requirements when individual terms are interpreted
separately, Physical optics fails these conditions in certain regions of space, and
yet it proves to be a valuable tool when used properly., I1ndividual creeving wave

terms in Keller's geometrical theory of diffraction127l

fail these requirements, yet
this asymptotic technique is considered an important and meaningful approximstion,

The point to be made here is that it is not unususl that separate terms of @ high=
frequency asymptotic expansion will fail to satisfy Maxwell's equations aud che

boundary conditions, even :hough certain of these terms appear to be separate physical
entities capable of standing alone, When one employs all of the terms in the asyupt;tlc
expansion together, and approaches the asymptotic limit (usually allowing frequency

to become infinite), the entire result will nearly always satisfy these requirements.

Zennecklzal first called attention to the fact that when une merely solves
Maxwell’'s equations at a planar interface between two humugencous media (one of which
may be slightly dissipative, representing the ground), and applies the boundary
conditions, one arrives at a field which appears to be "attached" to the surface
(i.e,, its amplitude attenuates exponentially with helght) and which fally off

exponentially along the propagation direction. This solution satisfjes the needed

requirements, but assumes the media are source-free.ﬁ The exponential atcenuation iIn
the propagation direction is not entireiy unfamiliar, and expluins the removal of
cnergy from the field; in this sense it complies with conservation of energy. This
removal of energy uvccurs here due to the dissipation of the ground, which converts

electromagnetic energy to heat. In other cases, such as propagation across a

*In this respect the approach is similar to "assuming" incident plane wave fields
everywhere, which is commonly done in certain situations,
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sligh:ly»rougﬁ surface or propagation through rain, this attenuation is due to
removal and scatter of constant fractional increments of energy per unit length

along the propagation direction. Since this wave obviously satisfied the proper
equations to justify its existence at an interface, Zenneck felt that it should

be called a "surface wave", Unfortunately, an error in Sommerfeld's 6r1ginal analysis
resulted in a form for Sdmmerfeld's surface wave which coincided with Zenneck's
definition, Zenneck took this as convincing proof for his explanation of radio

wave propagation over a surface, Sommerfeld corrected this oversight in a 1926

[29], which was apparently not noticed by everyone. By 1936, serious questiﬁns

work
began to arise concerning the importance of Zenneck's wave with radiation from
typical, finite-length, radio antennas; this attention was spurred b} experimental
evidence which showed propagation behavior unpredicted by the Zenneck wave.

Several investigations at that time by Nortonlz], Ricelao]

, and Burrows[32] found
the error in Sommerfeld's original work and obtained asymptotic expansions for

the radiated field exhibiting a common behavior. All of these works, along with
Sommerfeld's 1926 paper, showed that if the Zenneck wave was present, it certainly
would not be dominant at large distances from the source. Yet they did show[31]
that the ratio between the horizontal and vertical components of the electric
field at the surface (i.,e., the wave tilt) is nearly identical to that for the
Zenneck wave, This ratio is proportional to the normalized surface, impedance near
grazing incidence, and hence the definition and use of surface impedarce for the

[34]

description of ground-wave propagation is valid, Wait confirms this viewpoint

and gives a summary of ground-wave propagation from a vertical dipole based upon

[4]

the properties of the surface impedance, Furthermore, Norton showed that the
Poynting vector direction for his surface-wave component coincides nearly perfectly
with that predicted for the Zenneck wave when the surface impedance is relatively
low, This Poynting vector, being directed slightly into the surface, indicates
that the energy is flowing into the lower medium at an angle very close to the

Brewster (or "pseudo-Brewster") angle.
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Confusion and controversy continued.* Several other treatments of radiation
from a finite source were developed based upon intcgral equations, a different approach
from that used by Sonmerfeld and Norton, Feinberglzo] and HuffordIZI]
integral equation resulting from the application of Green's t?::fe- to the Helmholtz
King

integral equation originating from the “Compensation Theorem™, All of these anslyses

employed the

equation (the latter arising from Maxwell's equations). used a different
are based upon radiation from s finite source, e.g., a dipole, above a planar earth;
They all
arrive at the same asymptotic equation as the Norton-Sommerfeld result. Over

such a source in the absence of the plane would radiate a spherical wave.

the years, experimental evidence for radio-wave propagation has tended to confirm
these asymptotic expressicns, rather than the rapidly attenuating Zenneck-wave
explanation., The charge that the asymptotic expansion for the Norton surface wave
does not satisfy Maxwell's equations and the boundary conditions is answered in a

recent paper by Klngllo].

He shows that the required correction is arbitrarily small
if the source and observer points are close to the surface and the surface impedance
is quite low (the latter condition implying an electrically dense aﬁd/or lossy lower
medium), These conditions are nearly always satisfied in the case of propagation

over the earth,

Based on the concurrence of the several analyses and experimental evidence,
ona must conclude that the Norton-Sommerfeld result properly explains propagation over
a plane1 earth when the field radiates from a finite-sized source (e.g., a dipole).

The Zenneck wave is not poatulated on radiation from a finite-~sized source, and hence

*The need for some sort of "meeting of the minda" reached a culminstion in the late
1950's, when a working group was set up by U.R.S.I. (international Scientific Radio
Union) under the chasirmanship of J. R, Wait to agree upon suitable definitions on the
nature of surface waves. This group more or less dissolved at the URSI 13th General
Assembly in London, England, in 1960 when it appeared that further discussion on the
topic at that time would not be fruitful. The Proceedings of that meeting contain
discussion by participants reflecting their views on the subject (pp 533-539); more
data on the subject by many of the principal participants can be found in the Trans~
actions of the IRE on Antennas and Propagation, Vol AP-7, Special Supplement, pp 132-
2434 (1959). Waicl34] 1ater provided a rneeded comprehensive historical review of the
subject; this is both objective and quite thorough.

tThe nature of the surface-wave over a spherical earth is fraught with the same

general problems, i.e., does a wave of the Zenneck type dominate? Only the plane-
earth case is reviewed here for brevity,
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it does not apply in the ground-wave propagation problem since the source-generatead
asymptotic expansions show no evidence of its existence. Nobody has yet designed an
antenna which can excite a Zenneck wave over a plane earth (1if such a finite-sized

(18 discuss this gubject,

antenna is even possible), although Barlow and Brown
Therefore, one must employ the source-postulated approach, along with the asymptotic
expansions attributed to Norton and Sommerfeld (both for the plane and spherical

earth) when analyzing ground-wave propagation over the earth,

Nonetheless, paradoxes remain, If the Zenneck wave 18 not an important
component in the groundwave from a source, why does the polarization or wave tilc
obtained from the asymptotic solution agree so closely with that of the Zenneck
surface-wave? Why does the energy at the surface propagate into the ground at the
same angle, i.e,, the Brewster angle, for both cases? Are these facts merely a

coincidence? Wait[34]

points out that rather than coincidence, this near-equivalence
of the wave tilt at the surface 1s a consequence of che fact that the Zenneck-wave
pole in the Sommerfeld integral is near the free-space wavenumber in the complex
wavenumber plane, This mathematical connection between the two, however, does not
provide a clear physical interpretation of their relationship. An exact solution of

Maxwell's equations and the boundary conditions, in the absence of sources, shows that

such a solution must be a Zenneck wave, which is nearly planar and attenuating in
both the height and propagation directions, over a restricted localized region near

‘12’18]. Why is such behavior not present atbgreat distances from the

the surface
source in the asymptotic results of Norton? Needless to say, until these points are
answered in physically meaningful menner, controversy and confusion is bound to

continue,

111, APPROACH AND SCOPE OF PRESENT ANALYSLS

The purpose of the present analysis is to quantitatively establish the
effect of sea state on ground-wave propagation and attenuation over the ocean. Due
to the nature of the approximations made, the results will be valid at frequencies in

and below the VHF region; vertical polarization only is considered.

The first portion of the analysis will derive an expression for the effective
(or average) surface impedance of a roughened surface, Instead of treating the

surface as a perfect conductor, we shall use the Leontovich boundary condition for
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good (but finitely) conducting surfaces; this condition is especially spplicadble to
ocean water in the HF and VHF regions. Even though the sea surface may appear to be
a good conductor, the distinction between a good conductor and a perfect one at these

- frequancies is an important one. A ground wave propagating &cross a smooth perfectly

conducting surface suffers no attenuation due to the presence of the surface, and
propagates as though it were in free space. A good (but not perfect) conducting
smooth surface will produce attenuation of the ground wave at the surface.; for sea
water, this attenuation factor results in loss in signal level of tens of decibels at
ranges of 50 miles or greater even if the sea is treated as perfectly smooth. lience,
the present analysis of roughness will take into account this finite conductivity

from the outset, The Leontovich boundary condition, in contrast with other approaches,
is discussed in the next section.

As shown in Senior's analyoia[26]

, the effective surface impedance for any
surface is a function both of the angle of incidence and polarization. Since only
vertical polarization is considered, the remaining question arises as to the
angle of incidence to be used here. This is important, because results useful for
scatter at higher incidence angles are not usually meaningful when this angle is
reduced to the near-grazing region common in ground-wave propsgation, and one must
treat this case separately, To do this, a plane wave will be assumed to be guided by
the surface, and the effective vertical wave number will be determined and related
to the surface impedance. 1In this respect, tha approach taken is the ssme as that
in R1c¢[23] (i.,e,, a perturbation approach), except for the difference in boundary
conditions, This guided wave is identical to the Zenneck wave discussed previously.
One may ask why such an approach has validity here when we ultimately want to
consider a finite source which produces no Zenneck wave in the radiated far fiald?
Tha justification is based upon the discuasion in the preceding section; there it
was mentioned that results of Norton‘al and Wlse[all show that the Norton surface-wave
derived from the finite source radiator, has the same phase and polarization tilt
(i.e., direction of incidence) as the Zenneck wave, even though the attenuation in
no way resembles that of the Zenneck wave., Hence, the effective surface impedsnce
derived by employing a Zenneck guided wave, being applicable for the llmr3;n§z?ence

’

angle, can be used in the source-based formulation of Norton'zl and Wait The

*This has been defined in the preceding section as the Norton surface wave.
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reasons that we initially assume a plane wave propagating in a guided mode (Zemneck
wave) across the surface are primarily for the mathematical convenience and the
physical insight obtainable. A check on the validity is obtained by comparison of
tresult with that of Feinberglzzl where we permit the conductivity to approach
infinicy. Peinberg's result was derived from an integral equatioa approach involving
the source, Besides providing an alternate derivation from Feinberg's, the analysis
here shows explicitly the effect of the finite conductivity in the roughness contri-
bution to surface impedance. This addition indicates the limits of validity in
Feinberg's assumption, and also yields a correction factor which accounts for this
deviation from perfect conductivity. Furthermore, it obviates a numerical difficulty

encountered in computing the integral for a given sea surface model.

With the above technique, we derive an expression for the average, or
effective, surface impedance, This is the sum of two terms: the first being the
normal impedance of the otherwise smooth surface, and the second term representing
the additional effect of the roughness. The scale and spatial height spectrum of the
roughness (or the roughness wavelengths) determine the nature:bf this impedance
change., In the HF/VHF region, the radio wavelengths are of the same order as the
typical ocean wavelengths, and a noticeable effect on the impedance is expected. In
order to study this in a more quantitative manner, we select two semi-empirical models
for the sea surface: the Neumann-Pierson spectrum and the Phillips spectrum. In the
first model, the ocean waves are assumed to be slightly directional in nature, while
in the latter, a non-directional (or isotropic) angular dependence is assumed. These
models express the ocean wave-height strength in terms of wind speed, assuming that

this wind has been blowing sufficiently long that the resulting sea state is fully
[3s]

‘developed . Using the models, values of effective surface impedance are computed

numerically. This is done for a variety of frequencies from 1 to 500 MHz, and for

five sea states.

The reason for computing the effective impedance of the rough sea is to
eventually calculate the strength of the field in the ground wave radiated from a
source above such a surface. This is done using the computer program of Berry and

[36]

Chrisman for ground-wave propagation over a spherical earth for dipcle antennas,
In other words, after the average surface impedance 13 calculated which includes the
roughness effects, we assume™that the ground consists of a smooth surface with this

equivalent impedance. This proEﬁdure is in che spirit of Wait's articleljB] which
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suggests this, for example, for corrugated surfaces. Curves plotted from this pro-
gram are included which show the basic transmission loss to various points above the
earth as a function of ses state, frequency, range, and height, 'This is done for
propagation in both the downwind and crosswind directions so that gsome variance of
signal strength can be obtained.

Another effect occurs as a result of the roughness. The ground wave prop-
agating across the sea interacts with the ocean waves, and a portion of the energy in
it 1s removed and scattered off into the sky. This scatter does not take place for
smooth surfaces. Hence the total field arriving at any point above the surface is
made up of two components: the ground wave which would exist at this point for a
perfectly smooth surface with the equivalent impedance calculated, along with the
scatter from all points on the surface due to roughness*. The former component is
coherent, meaning that a CW transmitted signal will arrive at this point as a pure
CW signal. The latter scatter, however, is incoherent, in that {ts spectrum will no
longer be a pure CW sine wave, but will be modulated by the time-varying ocean
surface, The spectral spreading of the latter can be of the order of several tenths
of a hertz., Curves of the total average intensity of this incoherent component will

be shown in a subsequent report and compared to the coherent power in the ground wave
below it at the sea surface.

Additional subjects such as the sea clutter power, its spectrum, and bi-
static geometries, will be deferred to s later report. A section will describe the

use of the transmission loss curves for communications applications,

1V, ANALYSIS

A. Formulation of Various Boundary Conditions

l. General Conditions at Interface
Between Two Homogeneous Media

To solve any problem involving the interaction of an electromagnetic wave

with an interface between two media, one must relate the fleld quantities at the

*This does not take into account any ionospherically-reflected components.
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interface by means of constraiﬁ:s commonly referred to as boundary conditions. The
most basic and general conditions are derived directly from Maxwell's equations in
their integral form, These conditions are stated as follows: (i) the tangential
components of the electric and magnetic (E and H) fields wust be continuous across

the interface, and (ii) the normel components of the electric and magnetic flux
densities (D and B) must be continuous across the interface, This boundary condition
is valid for any arbitrarily curving interface. Unfortunately, it involves explicitly
the fields on both sides of the interface (except when the surface material is a
perfect conductor; this will be discussed in the next sec;ion), which increases the

complexity of solving many typical scatter problems,

2, Perfectly Conducting Surface

When the surface material is a perfect conductor, the above boundary
conditions simplify to the following: (i) the total tangential electric field above

the surface is zero, or in equation form,

-~

B .@ E)aso0 1)

and (i1) the total normal magnetic field at the surface is zero, or in equation form,
a‘H =0 )

In the above equations, f is the unit normal to the surface, ET and ﬁT are the total
electric and magnetic fields at the surface. Again, these conditions are valid at

any perfectly conducting surface, regardless of whether it 1s curved or planar, and
independent of the angle of incidence. They are more convenient usually than those

in (1) because they involve only the fields above the surface, in the medium of interest.
They do, however, involve only tangential E and normal H; i.e., there are no similar,
simple relations for normal E and tangential H at a perfect conductor, To obtain such
relationships in terms of the latter two components, one must solve Maxwell's

equations, and the results are not especially tractable or useful,
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3s Planar Interface Between Homogeneous
Media--Fresnel Reflection Coefficients

One case in which a simple boundary condition obtains for general homogeneous
materials occurs where the interface is perfectly smooth and planar. In this case the
total field on one side of the surface can be expressed entirely in terms of the
Freaanel reflection coefficients and the incident (locally plane) wave. These
reflection coefficients are functions of the incidence angle and surface material
constants, Any dissipative loss in the material (either electric or magnetic) can be
included in these coefficients as a complex permittivity and/or permeability, The
elimination of the fields on the other side of the surface in this boundary condition
is convenient, but unfortunately the entire method is strictly valid ouly for perfectly
smooth, planar interfaces (surfaces). This is in contrast to the boundary condition
for the perfectly conducting surface discussed praeviously, which is valid for surfaces
with any degree of curvature. That boundary condition applied only to ghc total
tangential electric field at the surface, whareas the one discussed here for planar
surfaces applies to the total (both normal and tangential components) electric and
magnetic fields at the surface., How to deal with curvthg surfaces will be considered
subsequently,

4, Curving Interface--Tangent Plane
Approximation and Fresnel Coefficients

The preceding section showed that the total fields at a perfectly planar
surface can be written directly in terms of the incident field times an expression
involving the Fresnel reflection coefficients. The question arises: under what
circumstances can such a convenient expression be extended to curving and rough
surfaces? This question has been examined in many places, and the general conclusions
are that it is valid when applied to surfaces whose local radii of curvature are much
greater than wavelength. In fact, the correction term in this approximation can be
shown to be of the order of (kop)", where k, = %F (A is the free-spaca wavelength),
and p is a radius of curvature of the surface. When wavelength and surface curvatures
are such that the approximation is reasonably valid, one writes the total field at a
given point on the surface in terms of the incident field and the reflection coeffi«

cients, the latter being taken at the angle of incidence to that point. llence the
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resulting expression for the total field at the surface varies from point to point

with the local incidence angle; this local incidence angle is defined as the angle

between the incident wave propagation direction and the normal to the surface at that f ;4fﬁ;;
point. The formulation of the total fields at the surface in such a manner is called % s
the tangent-plane approximation; it is often used along with physical and geometrical e
optics methods to compute the fields reflected and scattered from curving surfaces J—

in the high~-frequency limit,. N

The tangent-plane approximation carries two further reatrictions with it. e—
First, at regions of the surface not directly visible to the incident wave (i.e., -
shadowed regions), the fields are assumed to be identically zero, This vanishing of
the fields in shadowed regions 1s not strictly valid in itself. Furthermore, it
introduces complications in having to determine (either deterministically or statis-
tically) the regions shadowed for different incidence angles. Near grazing, this S e
shadowing effect becomes so serious that its neglect cannot be tolerated; yet it is
at near-grazing angles that surface waves appear to propagate, A second restriction
inherent in the tangent-plane approximation 18 the lack of multiple scattering between ‘,;if'
two or more surface points, This effect is neglected because the total fields at each -
surface point are written in terms of the incident field only at that point, which
excludes any field contribution reflected from a nearby surface point. Multiple
scattering 1s expected to be a serious contributor only for surfaces having many large

concave regions, and is not typical of the sea surface, for exauwple.

5, Impedance (Leontovich) Boundary Condition~-~ ‘;
Curving Surface

’

A further boundary condition which can be very usefil for certain situations
is called an impedance boundary condition, In patticulat,\thA applied to vectorial fr—
electromagnetic waves, it is commonly referred to as the Lur: svich boundary
condition because of the detailed pioneering invegtigacion: / Leontovichl37’38] on S
this subject in the 1930's, He showed that when the condv ..vity and refractive .
index of the medium below the interface are relatively large, one can arrive at an
expression for the total tangential fields immediately above the surface which does -
not involve fields in the medium at all, Furthermore, they do not require serious
restrictions on the surface radii of curvature, as does the tangent-plane approximation

discussed in the preceding section,
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In equation form, the Leontovich boundary condition appesars to ba a slight
extension of Equation (1) for the perfectly conducting surface:

B - (- EDA =2, xAD . (3)

Here, ET and ET are the total electric and megnetic fields above the surface and ; is
the unit normal to this surface., The quantity z. is termed the surface impedance.
For a homogeneous medium below the surface, z' is given by

Z. 'E ’ “*

where 4 and ¢ are the absolute permeability and permittivity of the material.

Obviously, the above boundary condition carries certain restrictions on the
media and interfaces to which it applies., As derived by Leontovich, these
restrictions are the following: (i) the index of refraction (i.s., /E?) of the
material is large and has a large imaginary part, (11) the fields immediately above
the surface vary slowly along the surface over a distance of the order of a wavelength
in the material (i.e., @ wavelength in the material is Am ~ lyéalko, where Ay is the
wavelength in free space), and (1i1) the radii of curvature of the surface are small
compared to Xn, the wavelength in the matasrial,

Thus, while there is a restriction on the radius of curvature of the surface,
it 18 considerably less stringent than that for the tangent-plane approximation. The
condition there was that the radii of curvature had to be large compared to )y, th
wavelength in free space, Lcontovichl38] iu fact derives the firat~-order correction
terms for the above boundary condition (Equation (3)) and finds that for a homogeneous
material, they contribute terms to the right side of (3) of the order of

Z.(n xH )‘ Tko/n€ \;: - —_)J . (%)
vhere o, and.p, are the principal radii of curvature of the surface at any point,

Investigators have found that the impedance boundary condition expressed
in (3) ts useful not only for homogeneous media below the surface, but also for other

types of surfaces such as corrugated and dielectric-clad conducting surfaces. In
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fact, the purpose of this report is to derive an effective z, for a randomly rough
sea surface., A rather thorough review of the Leontovich boundary condition and the
general impedance boundary condition for various types of surface conditions was

done by Senior(39’26].

B. Applicability of Boundary Conditions to the Sea at HF/VHF

Not all of the above boundary conditions are applicable tu a rough sea in
the HF/VHF region, The boundary condition selected depends upon the method of attack
used to solve the problem and upon the material and surface properties of the ocean.
Several investigators have employed questionable (and even inapplicable) boundary
conditions and techniques in the past to study sea scatter at HF/VHF, and this is the
reason that the question is studied rather thoroughly here. 1t is the conclusion of
this section that the only strictly valid technique to determine scatter from, and
propagation along, a rough sea at HF/VHF is the boundary pexturbation approach
attributed to Rice[23]. Using this technique, the only strictly applicable boundary
condition is the Leontovick condition, for scatter and propagation at near-grazing

incidence.

1, General Conditions at_Interface Between
Two Homogeneous Media

Rice initially formulated a solution for ascatter from a slightly rough
random surface between two dielectric media for a horizontally-polarized incident

[40]

to homogeneous surfaces with arbitrary u as well as ¢,

wiave, His results were extended to vertical incident polarization by Peake
by Barrick and Peake(AI’Azl
All of these analyses are based upoi. a perturbation expansion of both tha surface and

, and

the reflected fields, The boundary condition used is the general condition involving
the fields on both sides of the interface, as discussed under 1. of the preceding
section, While the expansion is messy algebraically, it is straightforward, and

results may be found in the above references.

As applied to the sea surface at HF/VHF, these results are believed to be
very questionable, if not entirely invalid. This is due to the fact that the
eaxpansion of the perturbed fields beneath the surface is based upon & simple series

ic(m,n)§

representation of the quantity e , in which only first three terms are
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retained. This is valid if c(m,n){ 1s small ({ is the ocean ‘wavo‘dgetght above a
'

mean level), However, c(m,n) is defined as ' e
c(m,n) = k°/¢ - —-7"“: - —-15 S m ko/€ p_ - 81070 ’ : 3 (6)
’ o' T ke ko e s :

where B‘ is the scattering angle from the vertical to the earth, and ‘r' B _are the
relative constitutive parameters, which in general may be complex, Fov the sea the
dielectric constant is about 80 and the average conductivity is about 4 mhos/m. At

10 MHz, this gives b " 1, ¢ " 80 + 17200, For real scattering angles 0., ]c(m,n)l

is of the order of 85 ko > 18 m™}. Hence, even for a very calm sea with ocean waves
whose heights, {, are of the order of 617 the quantity |c(m,n)(| 1s of the order of 3,
and clearly, the first three terms of the exponential aic(m,n)c are entirely insuf-
ficient, In addition, the representation of the solution with s perturbation formula-
tion, where c(m,n){ i3 a "smallness" parameter, is invalid because such a smallness
parameter must always be considerably less than unity.* The above restriction on ocean
waves fails throughout the entire HF/VHF region.

2, Perfectly Conducting Surface

The ocean at HF/VHF is a good conductor, and for many applications may be
considered a parfeét conductor., For our application here, however, such a
simplification ia not posaible. The following is an explanation of the reason. A
ground wave propagates in a direction close to grazing, but ac‘ually appears
to be propsgating into the surface at the Brewster angle. For sea water, this angle
at 10 MHz is about 1/2 degree from grazing. For the vertical polarization states,
propagation across a perfectly smooth, perfectly conducting surface takes place with
no attenuation (other than that of free space)., In addition, scatter from a
perfectly conducting, slightly rough surface 1s entirely insensitive to grazing
angle in this region, i.e., the scattered power for incidence and scattering angles
of about 2°, 1/2°, and 0° above grazing are identical,

i *The discussion here is not meant to imply that Rice's analysis using the interfuee

‘ boundary conditions between two homoegenous media is invalid {u general. There are
a great many surfaces and materials which meet this restriction. The condition is
eagier to satisfy for less dense surface materials; sea water, however, is quite dense
electromagnetically at HF/VHF,
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For a good, but not perfecﬁ, conductor however, propagation near grazing in
the vertical polarization states differs considerably from the behavior described
above, PFirst, ground-wave propagation across a perfectly smooth sea surface will
suffer several tens of decibels attenuation over that a perfectly conducting surface
Lo .at a range of, say, 100 miles, Hence, by assuming a perfectly conducting sea, one
. loses entirely the ground-wave attenuation function which is the essence of the
problem. Second, when such a surface is slightly rough, the scatter for the vezgicnl
polarization states has been shown to vary considerably at angles near grazing R
in contrast with the case of a perfectly conducting surface.* Here again, the dif-

ference between a good and a perfect conductor is critical.

\ For HF/VHF, and for most sea scatter problems involving hérizontnl and
vertical polarization (where incidence and scatter angles are restricted from the
region within 3° of grazing), the assumption of a perfectly conducting surface is
valid, In these cases, the Rice perturbation technique based upon equation (1) is
entirely adequate, and results derived and presented for average scattering cross

sections in[40-42]

are applicable (i.e., where a perfectly conducting surface is
assumed). For the near-grazing angles associated with ground-wave propagation, however,
‘ the assumption of perfect conductivity can lead to dangerous and possibly erroneous

A results and interpretations, as seen from the discussion in the preceding paragraph.

3, The Tangent-Plane Approximation

The tangent-plane approximation, as discussed in the preceding section,
replaces the total field at the surface by the incident field times a factor iavolving
the Fresnel reflection coefficients, These coefficients are strictly valid only at
- a perfectly smooth, planar interface, but may be employed with littia error when the
v radii of curvature of the surface at a given point are much larger than wavelength.
When this condition is met, the reflected field at the given point is treated as
though it had been reflected from an infinite plane tangent to the surface at that
point: hence the term "tangent-plane' approximation. The approximation is commonly
used to reduce an integral equation for the fields over the surface to a definite

integral, the latter being called the "physical optics" integral,

*The subject of incoherent scatter from a ground wave will be discussed in a separate
report, and this contrast in behavior between good and perfectly conducting surfaces
near grazing will be examined, )
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In order to be applicable for rough surface scatter problems, the radii of
curvature of the surface at most points must be considerably greater than a wavelength.
For the ocean, the dominant sea waves which will contribute to HF/VHF scatter are
those of the order of one-half the radio wavelength. To check the applicability, as-
sume a frequency of 10 MHz, and hence, a free space wavelength of 30 metars at winds
of about 10 knots, 15 meter~long ocean waves will be excited, and their heights will
be of the order of { = 2 to 3 feet. Such waves (assume they are nearly sinusoidal)
will have a radius of curvature at the peak and trough of about 7 meters, considerably

~ less than the radar wavelength. Thus, the restriction on the radius of curvature st

HF/VHF fails, and the use of the tangent-plane approximation here is extrenaly
quastionable.

A further argument against the use of the tangent-plane approximation with
the physical optics integral for propagation near grazing is the inherent neglect of
shadowing in the approximation, Shadowing at these angles will be s very serious
factor, and its neglect near grazing seems an oversimplification.

Various investigators have nonetheless employed this approximation and tried
to extend its use of HF/VHF scatter from the sea, As evidence of the incongsistencies
resulting from its use, no polarization dependence is predicted for scatter within
the plane of incidence. Yet measurements show considerably stronger scatter for the
vertical polarization states than for the horizontal states, For ground-wave
propagation, polarization is of the essence of the problem, and any theory which
shows no polarization dependence cannot be used. Therefore, it is concluded thal the
tangent-plane approximation cannot be used here for ground-wave propagation, inter-
action, and scatter from the sea in the HF/VHF region.

4, Leontovich Boundary Condition

The Leontovich (or impedance) boundary condition is applicable to surfaces
whose radius of curvature is larger than the radio wavelength inside the materials
as discussed in a previous section, For the ocean this wavelength is Xs - Aglljf:],
where ‘r is the complex dielectric constant of sea water, At 10 MHz, this becomes
1’ > 1 foot., As mentioned in the preceding section, the smellest radius of curvature
for the ocean waves producing scatter at these frequencies is about 7 meters or
21 feet. Hence, the requirement on the applicability of the Leontovich boundary
condition is readily fulfilled for the HF/VHF region and the sea surface,
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In employing this boundary condition along with the Rice boundary perturbation
technique, one therefore avoids the necessity of wiiting the fields above the surface
in terms of the fields beneath the surface. Since the technique is now based upon
an expansion in ko{ (i.e,, the free-space radio wavenumber times the surface height)
and not in terms of ksC (i.e., the wavenumber in sea water times the surface height),
the difficulties discussed in Subsection 1, above are avoided, At HF/VHF, the
parameter ko{ is considerably less than unity (for frequencies below about 50 MHz and
peak~-to=trough wave heights below about 4 feet), and the perturbation expansion about
such a parameter converges rapidly, In addition, shadowing is not neglected with this
technique, as it is with the tangent plane approximation.

Therefore, we conclude that the use of the Leontovich boundary condition
along with the Rice perturbation technique gives the soundest analysis of ground-wave

propagation and scatter across a rough sea at HF/VHF.

C, Guided Wave at Smooth lmpedance Boundary

At any smooth, planar interface between two media, various types of semi-
infinite guided waves can be shown to exist, They are semi-infinite in the sense
that they can extend to infinity in directions normal to the interface. They represent
mathematical solutions to Maxwell's equations which are forced to satisfy the boundary
conditions at the interfaca. The existence of this type of guided wave is postulated
without regard to the reality of sources which might be required to excite them, 1In
this sense they are analogous to the concept of semi-infinite "plane waves" in free
space, the latter merely satisfying Maxwell's equations without regard for the physical
reality of their sources, Like plane waves, the physical picture of guided waves is
believed to be valid over a small localized region near a?ai?terface farlziom the

shown that the Sommerfeld ground wave excited by a finite source has the same

gources producing them, As mantioned in Chapter 11, Wise and Norton have

polarization relationship and angle of incidence near the interface as the guided

wave,

The term 'guided wave" is employed here in order to avoid the use of the
controversial term "surface wave'", Actually, the guided waves, as we intend to use
the term, is identical to the "Zenneck surface wave'" often found in the literature.
Two types of simple guided waves can be shown to exist at a planar interface and
satisfy Maxwell's equations: plane guided waves and radial guided waves. The former
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represents the solution in rectangular (or Cartesian) coordinates; this wave, like a
plane wave, extends to infinity along a line parallel to the surface and perpendicular
to the propagation direction, The radial wave, in contrast, represents the solution
in cylindrical (or polar) coordinates; the wave fronts appear as circular, concentric
rings emanating from the z~axis normal to the interface. We shall deal only with the

former, or the planar guided waves because of the convenience of expending the surface
in rectangular coordinates.

Any elementary electromagnetics textbook can be consultad on the derivation
and analysis of guided wavcs.* The procedure is so standard that the details will
not be repeated here. The technique may be summarized as follows: (1) solutions to
the wave esquation are found in rectangular coordinates for the media on both sides of
the interface, (ii) the constants (i,e., multiplicative amplitude factors and also
wevenumbers appearing in the exponentials) are then determined by applying the boundary
conditions at the interface. Using this technique and restricting sttention to
impedance boundaries of interest in this application, the solution for the electric

field components of the guided wave above the surface can be written as follows (see
Figure 1):

E, " E expliko/T = &7 x = ikodz = fwt]) , (72)
B, = Boldexp{ikes/T = 47 x = ikgdz - fwe} ()
H = %%%; exp{ikoy/T = A% x - 1kodz - 1wt} , (7¢)

where Eg ™ E-field amplitude constant, 2' and A are the surface impedance and

normalized surface impedance reapectively. The latter conforms to the notation of

Wa1:(33’34], and 1s defined as follows:
Z
8
& =507 ¢ (8)

The solutions given in (7) are based on the assumption that |A|<<1 (which is true for
sea water at HF/VHF). Note that as the surface properties approach a perfect conductor

4 —~ 0, and Equations (7a,b,c) degenerate to plane~wave free-space propagation slong the
x~direction,

*Jordan's :ex:‘lz] (Section 7,09) provides an analysis of guided waves. A more
detailed treatment which includes both planar and (19*31 guided waves and various
tyres of surfaces can be found in Barlow and Brown (Section 2.1).
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Figure 1. Guided Wave Above a Planar Impedance Boundary

For a homogeneous material below the interface,

M
- /_;
a=Je (9

*

where b and ‘r are the relative permeability and permittivity of the medium. Either
or both may be complex., For our application, sea water has approximately the follow-
ing constants:

o ] ——o—
B 1, ¢ 80 + 1‘°w . (10)

where ¢; = 10°%36m, w is the angular frequency, and o is the conductivity of sea
water.f At 10 Mz, this value is approximately ¢_ = 80 + 17200, and thus

4>~1,18 x 10-? - e-iz « (The' time dependence, e 1wt, will be dropped henceforth,)

The solutions for the guided wave represented by Equationa (7a,b,c) are
valid for a smooth sea surface, When the surface becomes rough or corrugated, the
normalized surface impedance, A, appears to change. For a deterministic corrugated
surface, for example, whose period is much less than a radio wavelength, this change
manifests itself as a sharp increase in the reactive (or imaginary) component of A.

In particular, the surface appears inductive. It is this increase in A which we are

*Waitl %] shows that s more general expression for the normalized surface impedance
at grazing incidence above a dielectric surface is 4 = 1//¢ (1 - 1/s )3 ; this ex-

pression is exact, and (9) is an approximation valid where [/|¢_| 1s"much less than
unity, as is true here,. r

1This conductivity depends upon the particular ocean and its temperature., It almost
always lies between 3 and 5 mhos/meter. For this report, a value 4 mhos/meter will
be used,
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seeking for a statistically rough sea surface. This aversge, or effective, K; can

then be used in the Norton-Sommerfeld formulation for ground-wave propagation, in the
spirit of Wait's dicussion[331.

D, Guided Wave at Slightly Rough Impedance Boundary

1, Description of Perturbed Surface
Height

Let the mean plane of the sea surface be taken as the x-y plane, Then the
z-coordinate (or height) to eny surface point will be designated (. See Figure 2.
In general, { is a function of x and y, It can now be expanded in & two-dimensional
Fourier series over a square area of side length L.* Thus

Cix,y) = z P(m,n) exp{ia(mx + ny)} , 1)
m,Nm®
where a = %? » P(m,n) is the Fourier coefficient of the m,n th spatial hermonic of
the surface. The real nature of the surface height, {(x,y), requires that P*(m,n) =
P(-m,-n), where P* denotes the complax conjugate of P, This expansion can be employed
both for deterministic surfacao~height profiles, and for random surface heights.

Figure 2. Slightly Rough Surface Geometry

#The notation of Rice(23] will be retained here as much as possible in order to
facilicate reference to this classical treatment.
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In the case of the ocean, {(x,y) i3 a random variable. Over a period of
time, the surface profile undergoés a ‘complete change, and we can think of an ensemble
of random height profiles valid at different points in time, Hence, an average over
time can be physically juscified as repx:esenting an ensemble average, without undue
discusaipﬁ of the ergodic theorem, Therefore, averages (denoted here by (f) or H
will be understood to be ensemble averages,

' Since we shall have occasion to perform averages later, some definitions
will be stated, These also facilitate the transition from a Fourier series with
discrete surface-height spectral components to a[conl:inuous, average spectrum of
definitions, It can be shown in any statistical treatment of random noise (e.g., see
Davenport and Root:[“] .
can be used to validly represent a random variable, Furthermore, they show that the

surface heights, The reader is referred to Rice 23] for more detail on these

or Rice's ezrlier work lM’]) that a Fourier series such as (11)

series coefficients, P(m,n), become uncorrelated as L - =, Practically, it is
necessary that L be considerably larger than the surface correlation length or radius
in ordex for the coefficients to appear uncorrelated; this condition is assumed
satisfied here, since the ocean area considered here includes many ocean waves,
Recalling now that the coordinate system was chosen so that {{(x,y)) = 0, we can
state that

{(P(m,n)) = 0 . (12e)

0 for u,v # -m,-n
(P(m,n) P(u,v)) =
E;W(p,q) for u,v = -m,-n (12b)

where p'- am = 2n/L and q » an = 2m/L. The function W(p,q) defines the average
roughness spectral density of the surface, and p,q, are the radian wavenumbers (orr
spatial frequencies) along the x- and y-directions respectively. Using these
equations, the following relationships are established,

(Cey) = ;. (Pmn) P(u,v)) Jlax(m + u) + lay(n + v)

m,n,u,v
= mAn {(P(m,n) F(-m,=-n)) — J; dm 'Jra dn %; W(p,q)
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P [

”® o
[ [ oo apaq=e® (132)

(C(x,y) C(x',y")) = L (P(m,n) P(u,v)) o 4™ * ieux’ + lany + davy®
m,n,u,v ,

- L_. {P(m,n) P(~m,=n)) .1""(" - x') + lan(y - y'.)
m,n :
® o !

r

J

=41 up,q) ofP™ F 19Ty gp4q = oop(r 7)) (13b)
i 'y

ﬁherc Tx =x - x' and Ty =y «y', The quantity 0® is the mean-square height of the

surface, and R(Tx,Ty) is the surface height correlation coefficient. Relationshlp

(13b) werely states that the roughness height spectral density and surface height

correlation function are Fourier transforms.

2, Description of Perturbed Fields
of the Guided Wave

The underlying philosophy behind the perturbation approsch to be used here
requires that we expand the perturbed fields in the same eigenfunctions as those used
for the perturbed surface. Such field solutions will be required to satisfy the
wave equation, This leads us to choose the following form for our perturbed fields:

o
Ex = AE(h,0,z) + Z Am E(m + h,n,z) . (14a)
n.n.-ﬂ
<
E = L Bm E(m + h,n,2) . (14d)
y n’n-.
g
Ez = E(h,0,2z) + . né.. cm E(m + h,n,z) , (l4e)
where
E(m + h,n,z) = By exp{ia(h + m)x + iany + ib(m + h,n)z} , (15)
and
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b(h + m,n) = /kZ = a%(m + h)? - a%n° (1%)

The definition of b above 1s such that Equations (l4a,b,c) satisfy the wave
equation. The Cartesian components of the H-field are not given here, but are
readily determined from Maxwell's equations. -

1n the above equations, the presence of roughness manifests itself as the
sumation terms, As the roughness haight approaches zero, Amn’ an, cmn’ will vanish,
and b(h,0) — =kol; Equations (l4a,b,c) then become identical with Equations (7a,b,c)
for a guided wave over a smooth impedance boundary.

Also, coo
what it really means is that all of the remaining constants are normalized so that the

is taken to be identically zero in (l4c). This choice is possible;

0,0 mode appearing in (l4c) 1is removed from the summation as the first term, E(h,0,z)
with amplitude E,., Physically, the guided-wave portions of the field appearing
in Equations (1l4a,b,c) are all terms having the E(h,0,z) structure. These

are
£ = (8445 Eh,0,2) (178
E‘; = Byg E(h,0,2) (17b)
.
Bt « E(h,0,2) . (17¢)

The remaining portions of Eduations (l4a,b,c) consist of modes generated
by the roughness, These modes, to be termed the scattered field here, actually
include both propagating and evanescent modes,

3, The Average Normalized Impedance

The guided-wave portions of the perturbed fields are given by Equations
(17a,b,c). When one compares (17a) aund (17c) with Equations (7b) and (7a) for a smooth
impedance boundary, one is led to define an "effective" or average impedance guided-

wave propagation across a roughened surface as
={a+A,)=a+ oo’ » (18)
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i.e., the effective impedance consists of the constant impedance of a swooth interface
plus (Aoo), which accounts for the roughness. This convenient definition will in

fact be used, and the goil of‘ghe analysis will be to derive an expression for (Aoo).
If the roughness is to contridbute to the impedance, we expect this average to be
nonzero, Physically, (18) says that the average wave front and polarization tilt at
the surface is (Ei)/(ﬁi) =3 =A+ (Aoo), which is another way of defining the effec-
tive surface impedance.

Since there is no E_component of a guided wave over a smooth surface, we
should expect that (Boo) appearing in (17b) will be zero, meaning that (Eg) is zero,
on the average. This will in fact be shown later in the analysis.

4, The Perturbed Leontovich Boundary Condition

Basically, the method of solution to the problem may be summarized as
follows: We intend to employ Equations (1l4a,b,c), (which are solutions to the wave
equation) along with the description of the surface given in (11), to determine the
unknown constants Amn’ an, Cmn, and h, by forcing the solution to satisfy the
boundary condition at the perturbed surface. Of these constants, only AOO is reslly
needed to determine the effective surface impedance, as shown in (18). The others
will prove to be useful, however, in understanding the mechaniam of scatter from the
guided wave by the roughness.

The Leontovich boundary condition, as expressed in Equation (3), is written
in terms of the E and H-fields at the surface, along with the unit normal to the
surface, ni. All of these quantitias vary with position along the surface. To reduce
this equation to a usable form, however, we must express the unit normal! in terms of
the surface slopes; these are the :.rtial derivatives of the surface height as »
function of the independent variables, x and y. Defining them as

= 9g(x,v) = al(x,¥)

this normal 13 expressed in Cartesian coordinates as follows:
-Cx x=-( y+z2

y
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where %, §, and Z are unit vectors along the coordinate axes. Although implicit, ( and
cy are local functions of position, x and y, just as is ((x,y).

With the quadratic function in the denominator, Equation (20) is not very
useful in a perturbation analysis, In order to be useful, a further restriction on
the surface slopes must be made; they must be small, so that C;, C; << 1, When such
is the case, the quadratic can be simplified with the binomial expansion as follows

(1 + C; + C;]'I/’ >~1 - %(C; + C;), retaining only terms to the second order,

We shall employ the abéve approximation, and substitute (20) for & into (3).
In addition, we shall express H in terms of E by uaing Maxwell's-equation, Then
Equation (3) in vector form can be reduced td three scalar equations for the X, ¥, and
Z components, We preserve terms in c R C up to the second order, i.e., up to C; and

C;. The results for the X and y components are, respectively,

3 A (EEZ EEE rl 1/ .a a\| Ez } 21
o 6o Gt o 3 Do He I ) e
OE 3E - 3E
- - a bl (=2l xy. | z
B, - GGF, - GOE, + (E, 1k,,{ gy "= ) - -( +C’)_l\ ay)} . (21b)
The equation for the £ component 13 not written above and 18 not used in the analysis,

The reason is that it is not independent of the other two, but can be obtained from
them using the divergence equation.

Also, no attempt is made in the above equations to order the fields. For
instahce Ey (the y~-component at the surface) will be amall compared to Ez, i.e,, it will
be at least first-order if Ez is zerc~order. Hence, the term CnyBy will be third-order
and could have been omitted from the above equation, since only terms up to and includ-
ing second-order are to be ultimstely retained. However, the field components are not
ordered as to smallness at this point so that cﬁe possibility of omitting significant
terms will not occur. They can be easily dropped later, and the intervening analysis
will serve as proof that they are small,

This boundary condition, as noted previously, applies at_the perturbed surface,

relating the various E-field components and their derivatives.
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22 Restrictions Made and the Perturbation

Parameters

In many analyses, so many assumptions and approximations ars made along the
way that the reader is never sure of the validity of the results. In summery, we
shall state at this point the assumptions we have made,

(1) The normalized surface impedance, 4, 1s considerably less than unity.
This is true for sea water, and at the highest frequency we intend to cunsider (f.e.,

. " }
100 Mvz), |Al ™ ,038; it décreases further at lower frequencies.

_ (1i) The radii of curvature of the ocean waves producing scatter is
considetably greater than the wavelength within the medium. At low frequencies, this
restriction is the most serious, and at 10 MHz, for exumple, it was shown in a previous
section that it is very adequately fulfilled.

(111) In free space, (kOC)a << 1, 1,e,, the surtace helght compared to
wavelength is small, 1n very high seas, say.Seq State 6, where wave heights, {, can
be *4 feet from a mean level, (ko{)? ™ .4 at 30 MHz, For calmer seas, which are much
more prevalent, the frequency of validity can be extended higher; e.y., to 100 Miz
for Sea State 3,

(iv) C;,C; << 1, i.e., the ocean waves responsible for scatter have rela~
tively small slopes, This is adequately satisfied for deep seas (l.e., away from
coastal reef areas which can produce breukers) where the surface angle for waves whuse

lengths are several meters will rarely exceed 20°, for which C; < .14,

It is important to note that the above conditions can even fail at a finite
number of points on the surface, and the validity of the results is not seriously
impaired., They cannot fail, on the average, over moat of the surface, however,

Because of the nature of the perturbation analysis which wa intend to employ, we will
have need to "order" or expand teims mathematically about "smallness" or 'perturbation’
parameters, As a result of the above restrictions, we shall employ the following

perturbation parameters:

(1) ko{; we shall include terms to second order in this parameter
(i) Cx and Cy; likewise, terms to secound order will be retained
(iii1) A; we shall retain terms Lo first order in this parameter

(iv) Amn’ B , cmn; these are taken to be of at least first-order in

mn
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i . smallness, since they represent field perturbation due to the

' roughness. On the basis of the restrictions mentioned previously,
these parameters will be shown to be at least first-order, However,
in order to facilitate the dorivncion,/ye shall employ the definition
A = AQ:) + A::) 4+ veo 5 with similar definitions for an, Cmn. This

mn .
means that we break Amn up into first-order contributions, second-order

contributions, and 8o on. The firste-order contributions to Amn
1
(i.e., Ain)) then come from first-order terms in ko(, Cx’ Cy, and A, .

6, Derivation of First-Order Coefficients
of the Perturbed Field: A(1), B(1), and C(1)
on__mn on_

Equations (l4a,b,c) represent the perturbed field expressed in terms of the
coefficients Amn’ an, and Cmn. These coefficients we order according to smallness,
as discussed in the preceding paragraph, Then the resulting expressions for the
perturbed fields are substituted into the boundary conditions (21) and evaluated at
the boundary, i.e., for z = {, At this point, we also discard terms obviously of
higher order than second, We employ the following expansions of the fields at the

surface, correct to the second order in {:

E(m + h,n,z)lz_C
= E(m + h,n,{) =™ F(h) Ex(m,n) [1 + ib(m + h,n){ - % b (m + h,n)C'} . (22a)

%E(m + h,n,z)
ox

z=( =

> i(h + m)a F(h) Ex(m,n) [1 + ib(m + h,n){ - % B (n + h,n)c"} . (22b)

E

QE(m + h,n,z)
ay z=(

> ina F(h) Ex(m,n) [1 + ib(m+h,n){ - El-b’ (m + h,n);"} , (22¢)
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® {b(m + h,n) F(h) Ex(m,n) [1 + ib(m + h,n){ - % P (m + h,n)c‘] . (224)

vhere F(h) = Eoe ">, and Ex(m,n) = exp{iamx + iany).

When the above expansions are used, the following expressions are obtained
from (21), correct to the second order in the smallness parameters defined in the

preceding section,
A P(h) [1 + 1b(h,0)C - % b'(h,O)C'] +
+Z{ [A':) + Ag)] [1 - tb@ +h,n)g - 5 P(m+ h,n);ﬂ] } .
* P(h) Ex(m,n) = (238 F(h) + { F(h) [1 + tb(h,O)c] + ¢ zcs‘) F(h) Ex(m,n) =
e T VgD ¢S] R
T [ G, L By t(m+ e = AL 1n-} F(h) Ex(m,n)
- 1b(h,0) & F(h) [1 +1b(h,00¢ - 3 b’(h,O)c'] +

+ 1ha F(h) [1 + 1b(h,0)( - -;-b’(h,O)c'] - Z{ ]_ (A:-:) + A:’Z‘)) ib(m + h,n) -

- (€2 +c®) 1@+ ma] -
[+ @+ nme] }ro) Excmm + 3 (2 4 @) [toh,08 - tne | o] . (230
L{BE +a@1 1 s mrc] 1 s - 50700
+ ¢, Fm[1 + 1ben,00¢ |
+ ¢, 2.6 pm excam = [0 7 { AL tna - 5D i + e} £ Excaym)
DY 32) e+ 60+ ] 1+ e ]

F(h) Ex(m,n) | | (23b)
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In the above equations, the factor F(h) is common to all terms and can be dropped.

Following the classical perturbation technique, we now collect terms of each
order and set each set separately equal to zero, Let us collect first the zero-order

terms from (23a) (there are no zero-order terms in (23b)).
A - -
8+ g [1b(h,0)A 1ha] 0 | (24)

This equation contains the propagation constants associated with the guided wave. In
ordar to convince ourselves that the left side is really equal to zero (to at least
the second order), let us employ the divergence condition on the guided-wave fields
as expressed in (17).

&% &% xS

R S S » .
v erfe0 e g oy X a thaa + Ay + 16,0 =0,

S b(h,0) = -ha(A + A (25)

00’

But, ha is defined in terms of b(h,0) from (16), i.e., ha = Jk3 - b2(h,0). The

quantity b(h,0) will be small compared to ko since it represents the z-portion of
*

the wavenumber for the guided wave. On the other hand, ha will be very close to ko .

Hence
\

a2
ha * ko(1 -%P—(k:-tg)w...) (26)

by the binomial expansion., Now, let us substitute (25) for b(h,0) into (24).

A-%A[A’+AOA+1] -0 .

0

Now, substitute (26) for ha into the above, The result is

8%+ 4%

2
-ib hO) 4.9 27)

o

All of the terms in the above equation are of higher order than second in A, AOO' and

00

b(h,0) . Hence, Equation (24) for the zero-order terms is actually zero to the order of

terms to be retained throughout this analysis,

*These statements are true for the types of surfaces beilng considered here, i.e., those
which satisfy the restrictions imposed in the preceding section.
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Now, let us collect all of the terms from (23a) and (23b) which sre of
first-order in ky§, Cx, Cy, A(l)_ 3(1), and c(l). They are:

18 b(h,000 + (_ + % 1b3(h,0)¢ = % tha b(h,0)( + 2{ [1 + 'u% b(m + h,n)] Al .

. ﬁ- (m + h)a cg)} Ex(m,n) =0 , (288)
¢, ORELE: ;‘:7 bem + n,m | 81 - L’% na ¢V} exmm) =0 . (28b)

In equation (28a) above, the terms multiplying ib(h,0){ are identically
the same terms as appeared in Equation (24); they are equal to zero, at least out
beyond the second order, Hence, Equation (28a) becomes

Cx+L{[l+-—b(m+h n)JA(l) L @ +h)a c“)} Ex(m,n) = 0 (28¢)

The surface slopes cx and Cy can be written ss a series in the eigenfunctions
Ex(m,n) by differentiating Equation (11):

Q‘ - 2 ima P(m,n) Ex(m,n); Cy -Zina P(m,n) Ex(m,n) . (29)

‘ When these expressions are substituted into (28b) and (28c), one has a
series whose terms each contain the same eigenfunction Ex(m,n) as a factor. In order
for such a series to be zero, each term must be identically equal to zcro*. The
following two equations are obtained from this procedure.

[1 + A—bﬁz—o—hﬁj Ag) - M2 :oh 2 c:nl‘) = -ima P(m,n) , (30a)
[1 + o2 :oh 2 Bg) Ako ¢ v ina Pm,n) . (30b)

Represented above are two equations in three unknowns, A(l) i;), and
c;:). To this we can add a third independent equation by using the divergence
condition (i.e., V * E = 0) with Equations (l4a,b,c). The m,n = O terms give (25).

All higher terms when equated to zero give the following identity:

(m +h) a AS‘) + na ng) + b(m + h,n) c“’ ) (30¢)

*This result can be proved formally by integrating the series over the range of x and
y, i.e,, from «L/2 € x,y $ L/2,
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Now we have three equations in three unknowns, They are most easily solved
by expressing cé;) in terms of Aé:) and Béi) using (30c). This then when substituted
into (30a) and (30b) leaves two equations in two unknowns, which are then readily
solved by elimination, The final results for the first-order pe}tutbed field coef~
ficients are:

N «(m+h)aN, = naN
W N e I, | (L) '
A D P(m,n); B o ) P(m,n); Cmn B(m + h,m)D P(m,n) R (31)
where

b(m + h,n) A(m + h)na?
L' '”‘“[1 + A( PP kob(m +h n))] + i““k‘,b(m Th,m ° (32a)

- b(m + h,n) . _(m + h)%a? -~ A(m + h)na?
Ny = -tna[1 + (R0 4 eIk “"‘Efm'ﬁ.‘i) g (32b)

D= [1 + A(E.(E.{.OLE). E‘%‘:—))] [_1 + A(_(_ + h,n) I‘ob(:‘aiah’b))J .

3 2 3.4
- ﬂ'(r——)———A b'n(; :‘_ h:‘n; . (32¢)

Several facts are worth noting in the above equations for the first-order
coefficients of the perturbed fields, First of all, the quantities NA’ NB’ and D
contained in the factor before P(m,n) are functions of the scattered-field propagation
directions and the surface material properties; the former directions are determined
by (m + h)a and na, while the surface mate properties are represented entirely
by the normalized surface impedance, 4 = Jffil. These quantities do not depend upon
the surface roughness profile, The dependenge ﬁpon thia profile is contained entirely
in the facfor P(m,n). The latter, recall, is the m,n-th Fourier coefficient in the
expansion for the surface height, as expressed in (11). Hence, the strength of the
scattered plana wave in the direction defined by (m + h)a, na, is directly proporticnal
to the m,n-th Fourier component of the surface height (to the first order). 1If a
surface-height component corresponding to m,n is zero, then A(l) (1), and C(l) are
zero, meaning that no scattered wave propagates in the direccion defined by (m + h)a,na.
The theory of Jcatter from slightly=-rough periodic surface dates back to Lord
RayleighlAs]

place in unique directions, or lobes, determined by the Fourler components of the

. He derived expressions similar to (31) and notad that scatter took

surface and the length of their periods with respect to the wavelength.
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lat us recall that the object of the present analysis is the derivation of
00’ it is the average of this coefficient which contributes to the surface impedance,
as seen in (18). To the first order, however, A( ) is zero, This is trus because
Aéé) is directly proportional to P(0,0), i.e., tha DC or mean height of the surface
C(x,y) above the x-y plane, The x-y plane was chosen to be the mean plane, however,
snd hence P(0,0) is identically zero, Thus we see that AOO can be no grester than
second order, 1t is for this readon that second-order terms wera retained in the

.qu.tion. .

7. Derivation of the Second-Order Coefficient Agg)

As shown in the preceding section, the contribution of the roughness to
the surface impedance is contained in Aég) (1) is identically zero, Hence, we
shall determine Aég) in this section from Equationl (23). While it 1is possible to
determine all of the general second-order coefficients, A::), B:ﬁ), ::), this will
not be done here; they are not necessary for our purposes.

It turns out that Aég) can be determined entirely from (23a). Keeping with

the perturbation technique, let us gather the second-order terms in (23a) and equate
them to zero.

1 - Yy 1) _,(2)
-3 b'(h,O)c’[A i b®,0) + = hn] + Z [1b(m +hm T +A ] Ex(m,n)

- 8¢ + 1b(h,0)CC, + € Zc‘:) Ex(m,n) = 1—,‘:;- [- <, Z {ng) 1(m + h)a

- A 1na} Ex(m,n) = 2:{1b(m +h n)C[é( )ib(m + h,n) =~ C( ) i(m + h)n] [ﬁ(z)ib(m + h,n)

-c®i(m+ h)n] } Ex(m,n) + & (;; + ;;) (16(n, 008 - m)] . (33)

The first term containing {? is zero because the factor in square brackets
is zero, as seen from (24), Also, using (24), the last term can be simplified, since
the factor ib(h,0)4 - itha is -ik,.

Now, let us group the unknown, second-order coefficients A(z) and Céi)
appearing in (33) together on the left side of the equation. The result is
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Z[H-A-"—‘"—::d‘l) NS -A-@l—::h)icg)] Ex(m,n) -%(;;-c;)+1k°Accx
.L{[ib(m+hn)c(1+am) A—cy]A“)+A$11—'9-9- ¢, a(D)

+ [-ib(m +h,n) (B -Q‘;:-oﬁ)i + cx} ¢D} exmmy (34)

The right ai;do of the above equation will involve double summation sets.
In order to employ the orthogonality relationship of the eigenfunctions, Ex(m,n),
more effectively it is convenient to rearrange the double summation. "The examples

below illustrate the procedure,

¢ - ZB j_t (18) (1¥8) B(o,B) (¥, Ex(3 + Y, B + )
Z ta(m - ) (1ah) P(A,2) P(m = A, n - £) Ex(mn) , (358
.S o3
ib(m + h,n)CA - .ib(a + h, B) P(Y,{) A Ex(x+ Y, B8 +
’zn yn ' J,‘B \Z{ ¢ ap (9

s z 2 (A +1,1) ALY Pm - A, 0 - 8) Bx@n) . (35b)
m,n #54

Likewise, the remainder of the terms on the right side can be arranged so that the
factor Ex(m,n) appears explicity. As a result, the right side of (34) then becomes:

%22[(“*) ia(m - A) - (iaf) ia(n - ‘)] P(M, £) P(m - k,n - £) Ex(m,n)

+ ikoA ZZ ia(m = A) P(M,L) P(m - N, n - £) Ex(m,n)

22 {aY [ed+n,m 40 —"?-U-'-*‘—L-‘-l A _i&'.;.é).]+ p(l) 4 La2(H £h)e s 2)

+ cnl) [iA(m -k) -4 ib(h + hl“:)io + h)]} P(m =~ #,n - £) Ex(m,n) . (36)
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14243  1b3(A + h )\ ,(1) . 1a%(A + h)L (1) . 1b(A + h.L)a(A + h) (1)
'A[(ko + ” )AM +—-(—k-°—-2—nu+ c

36

Recall, we are interested in finding A&‘;), i.e., the second-order coefficient
form = n = 0, This can be readily done by invoking the orthogonality of the Ex(m,n)
functions over the square region of interest, As a result of this relationship, the
coefficients of Ex(0,0) on each side of :he equation are equal,

The left side of (34) becomes

(1 + 02O Lo A2 |y ba (D)

00 ko 00 *

This result can be simplified further. First of all, cOO is zero, by definition, to
all orders; this definition is merely one possible normalization, as discussed after
Equations (14). As seen above, it is a logical selection because it results in a
convenient separation of coefficients, Secondly, the term A E—&‘-‘m is of second order
compared to unity, This is evident from (25) where we see that b(:;m "b@k;ol bl

00 ° Hence, it can be neglected compared to unity, to the order of the analysis

here, Then the left side becomes merely Agg).

When we group the terms on the right side of (34), as shown in (36), which

sultiply Ex(0,0), we have the resulting equation for A((xz)).
@ . ) (1) (1) P e
AOO i‘{ ib(A + h, 1) Ahj + iah CM. ]4- A [kqaﬁ+——-—2-——-] P(h, L)
»

L) S

ko . 37)

In the above equation, the terms in the first set of lquy{uckcu
P
within the summation are the lowest~order terms in the surface .impedance, A. For a

perfectly conducting rough surface, A — 0, and only these first terms ars left. Hence,

‘the remsining terus represent the contribution due to the finite conductivity of the

surface material, correct to the first order in A,

At this point, we can employ the expressions derived earlier for the firstce
order coafficients AS‘), B::‘), and Cg); these are shown in Equations (31) and (32).
When they are substituied into (37), considerable slgebraic simplification is possible.
Spering the reader the details, we write the final expressions for the various terms.

In reducing the expression in the first set of square brackets, we preserve
terms up to A, The final result is
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2
- bh a0 Ay + tancl)) - [ T Sy @+t R

(38a)

where D(#,L) is given in (32c) with m,n there replaced by #, 4%,

The expression in the second set of square brackets 1s already expressed
in the form we desire. That in the third set of brackets can be simplified, and only
terms qf/iero-order in A need be retained because the expression is already of order
A due/}o this multiplicative factor. Thus to the lowest order, the expression within

:Hésc third brackets becomes
a8l + 08 | B(h, 0 (38b)
(A, 2) ? ‘
Using the simplifications expressed in (38), Equation (37) can thus be
written as follows: -

a%% + 2% - koah

(2) = “L‘ {b(h +h z)n(a Hte [ O]

+ (k.,.h + '—-*—’-;—i’—‘-'-)_l} lpca, ) )® . : (39)

In addition, the expression D(#,4) can be reduced, ind to order 4, it

becomes

- kg (A4 h L
D(ML) > 1+ st A[" ko.-—-—-?- +1:\ ) (40)

(2)

Thus, we have obtained an'expresaion for AOO in terms of a summation of
terms in the square of the Fourier coefficients of the surface height. This constant,
as shown in (18), is the contribution to the surface impedance due to the presence

of the roughness, Since terms are retained to order A in Aéo), one can observe the
effects of finite conductivity of the surface material on the roughness contribution.
When the material is such that |A| is large, Equation (39) 1is obviously inadequate

to describe the effect of roughness, The second term in (39) provides a first-order

correction in 4 for moderately small values of this parameter,
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8, Average Surface Impedance

Equation (18) expresses the overall effactive surface impedance as the
sum of 4, the constant impedance of the surface material in the absence of roughness,

plus the average of Aég), which is the effective contribution dus to roughness. {

Before proceeding to take the indicated average, it should be noted that there may :
be some cases where an average is not desired. Equation (39) expresses A(()z) exactly, I
in terms the coefficients of the Fourier expansion for the surface profile. If this
surface height profile is known exactly, these coefficients can be determined exactly,
and (39) represents a deterministic resul:*. For example, 1f the surface profile is
a pure, one-dimensional sinusoid, then {(x) can be expanded so that only two terms in
the series (11) are non-zero, 1In this case, Aég consists of only two terms, the one
which has A = 21 £ = 0, ’

The sea surface is an example in which the exact height profile is neither *
known deterministically nor constant over a very long periud of time. Hence, it is
one situation in which an average is the only meaningful description of the effects .
of the surface on propagation, To take the average of (39), we shall employ the
definition of the height spectrum W(p,q) in terms of {|P(m,n)|?), as expressed in
(12b). 1In addition, we allow the summation over #A,{ to approach an integral, in the
same manner as was done in (13)., Understanding here that p = a# = 27A/L, and
q = al » 2nt/L, we obtain the following result for (Aég)), and hence A:

- (2)
A A+Aoo .

or

L=A+ -,t- r j. F(p,q) W(p,q)dpdq , (41)

where

2 TA(n3 3 _ 2 - o
7(p,q) = B :."fﬁ;—’b.*r}l, kap) 4\ 4 kep) (42a)

b = tfkg T rR - @, (62b)

*The validity of the result is still dependent upon fulfillment of the restrictions
described in Section 5 above, of course.
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and W(p,q) is the two-dimensional surface height roughness spectrum; it is a function
the spatial wavenumbers p,q corresponding to the x,y directions and is defined in

terms of the height correlation function in (13b). In obtaining the above expressions,
we also used the approximation that ha —* kg; this is valid so long as 3 is small
compared to unity, as seen from (26).

As a check on (41), if we permit A to approach zero in (42a), we obtain
F(p,q) = p?/b’, and

- 3 .
Tep+ b er&m ; “3)
ad -0
this result was derived from an integral equation technique by Feinberg in 1944[20],

(8]

and repeated by Bremmer ', In addition, if we permit the surface to become perfectly
conducting so that A approaches zero everywhere, (43) consists only of the integral;

this expression checks with that of Ricelza]

, who initially assumed a perfectly
conducting surface, Hence, we have in (41) an expression valid to order & for

imperfectly conducting, rough surfaces.

9, Physical Interpretation of Roughness Contribution
to Surface Impedance

Equations (41) and (43) show :héf the contribution of the roughness to the
surface impedance is represented by the integral, To better understand the inter~
action of the guided wave with the roughness, let us condider first the simpler form
of the integral, i.e., that in (43), which i{s valid when the surface is perfectly
conducting., The height spectrum, W(p,q), ia always a positive real quantity, Thus
the nature of the integral contribution depends entirely upon the denominator, i.e.,
b! = 4&.- (ﬁ% + 1)= - (i%)i. This quantity can be either gure real and positive or
purely imaginary and positive, depending upon whether (ﬂi) is less than

or greater than unity,

This can be better illustrated by referring to Figure 3, Let us separate

the contribution to A of the integral into two parts, RA - iXA. The contribution RA
comes entirely from that part of the height spectrum lying within the unit circle

centered at ﬂi = -1, it = 0, 1f there are no roughness spatial frequencies, or waves,

within this region, then the resistive conatribution is zero; these spatjal frequencies
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must thus be less than 2ko. Physically, this statement means that only ocean waves
longer than % can COFZ{iZ;;e to the resistive portion, From a study of scatter from
this type of surface’ "’ ', it has been shown that waves whose lengths are greater
than A/2 are responsible for scatter., Hence the interpretation of the resistive
portion becomes clearer; longer ocean waves whose wavenumbers lie within the circle
are responsible for removal of energy from the guided wave and scatter of this energy
into all directions in the upper hemisphere, This energy removal produces an increase

in the resistive term of the surface impedance.

On the other hand, if there are no ocean waves whose lengths are greater
than a half-wavelength (i.e., which lie outside the unit circle), then the roughness
contribution to & is purely reactive; in addition, it is always an inductive

[41’42], roughnesé waves of these shorter lengths do

reactance, From scatter theory
not scatter (at least to the first order in ko{, the roughness height). Hence, this
higher frequency roughness produces a perturbation on the local field at the surface
which exists only at and near the region between the waves; since there are no
scattered propagating fields removing energy from the guided wave, this effect should
be evident only very near the surface. The perturbed modes in this case are not
propagating, but evanescent, because the only coefficients Agi), B;;), and C;;)

which are non-zero are those whose wavenumbers am, an are such that b(m + h,n) is

ib(m + h,n)z

imaginary, and hence, the exponential e in the perturbed fields (Equations

14~16) is attenuating in the +z direction above the surface.

This reactive nature of surfaces with short roughness periods is confirmed
by many studies on corrugated surfaces, and especially, surfaces with rectangular

slots or ribs[46’33]. Elliott's analyais(46]

is based upon Floquet's theorem (as are
many other similar treatments), and employs an approximation of the field between

the ribs. The approximation is valid, Elliott points out, when there are more than
ten corrugation ﬁariods per radio wavelength, Hait[33] feels this requirement can

be relaxed to five periods per wavelength, These analyses then show that the dominant
guided mode has a wavenumber which can be related to an effective, purely reactive
(inductive), surface impedance. The slota or ribs act as resonators in this case.

The analysis we used here cannot be used to analyze such structures, because of the
requirements we imposed in Section 5 above demards that the surface slopes be small,

A ribbed surface has infinite surface slopes at the edges or walls of the ribs.

Nonetheless, the two different techniques both lead to reactive surface impedances
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when there are more than two surface periods per each radio wavelength, We shall see
later that the reactances predicted by our analysis are well below those applicable
to ribbed surfaces with similar heights but whose walls are vertical; such a result

is expected, because more sloping sides will reduce the resonator effect batween
teath,

When the surface is not perfectly conducting, finits fields can exist beneath
the surface as well as above it, This fact is accounted for by the Leo ich
boundary condition and the use of a non-zero surface impedance, A(A - Jrég?). One ef.
fect of this finite impedance is in evidence in the denominator of the 1n€cgre in (41);
the denominator does not go to zero on the unit circle in Figure 3. This fact makes
for easier numerical integration in the vicinity of this singularity. Results lacer
will show, however, that the effect of the additional terms in (42a) is to increase
slightly both the resistive and reactive portions of the effective surface impedance.

'

E, Numerical Determination of Effective Surface Impedance
for Two Ocean Wind-Wave Models

1, _Background

The roughness present on the ocean surface is due almost entirely to the
wind blowing across the water, Oceanographers have found that to excite ocean waves
of & given spatial period, L, a wind with velocity greater than g% must blow for
several hours (g is the acceleration of gravity). If the wind does not reach this
given speed, then waves of this length are simply not present. If the wind speed does
exceed this speed, the heights of the waves of period L remain constant, relatively
unaffected by any further wind increase, Hence the shorter ocean waves are the first
to be excited by an increasing wind, but after aroused, the height of these short
waves remsins fixed. In this sense the ocean wave-height spectrum is said to saturate
with wind speed.

The saturated height vs spatial period for ocean waves has been the subject
of experimental and theoretical studies to oceanographers for many years, Two recent
monographs on ocean waves provide an excellent discussion and review of experimental
evidence on this subject (Kinsmnn35 and Ph1111p347). Over the past 15 years, several

empirical models have been proposed, and two of these have found relatively wide
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acceptance’. They differ mainly in the "power law" followed at saturation and in the
shape of the long-wave cutoff vs wind speed. They are the Neumann-Pierson and. the
Phillips spectra.

It is not entirely correct to say that the ocean-wave heights at a given
point on the sea are due solely to the winds that have blown across this point,
Waves generated in a given area can and do propagate to portions of the ocean which
have had considerably different wind histories., This i3 espacially true of the longer,
faster moving ocean waves, The roughness in a given area due to winds in other areas
is known as swell., The ocean-wave spectra models to be discussed below neglect swell
as a source of roughness, and relate the ocean-wave heights to the winds above that
surface area, This oversimplification should be kept in mind before placing too much

confidence in the wind-dependence of the effective surface impedance.

2, The Neumann-Pierson Spectrum

Neumann and Pierson first suggested a model which seemed to fit wavemeter
messurements about 15 years ago. Their model was an 1sotropic* temporal spectrum in
which the saturated value is related to the temporal radian wave frequency as w"e,

To this they added a "guesstimated" lower end continuous cutoff function, since it
seemed unreasonable to them that the cutoff should be abrupt. The resulting empirical
law can be converted to an uocropic* spatial spectrum, l(inamn35 proposes a reason-
able extension of this to produce a directional* spatial spectrum with a cosine-
squared dependence about the wind direction in azimuth, The spatial spectrum then

has the form

?
Wp,a) = Sp PRt LR wpl-2g/ (/T F D) (44)

where U is the wind speed, g i3 the acceleration of gravity (9.8l m/s’), and C is a
constant empirically estimated to be C ™ 3.05 m®/s®, The wind is assumed to be blow-
ing in a direction o with respect to the x-axis, and hence the main ocean waves move

along this direction. The spectrum above is assumed non-zero by Kinsman only in the

*Isotropic means that ocean wave direction is not recorded and/or present. Some
directionality would be expected, with dominant ocean waves moving in the wind
direction., Unfortunately, too few measurements have been made to make a strong case
for any given directional dependence. :
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half-space into which the wind is blowing; this is reasonable, for one would expact
nearly all of the waves to be driven in the wind direction. The mean-square height
of the ocean waves from tha spectrum is of = %C(W/Z)’/’ + (U/2g)°8.

We now employ (44) in Equation (41) and evaluate the integral numerically
for the two extremes in wind (and wave) direction: o = 0, representing radio
propagation along the dominant water-wave motion, and o = /2 representing propagation
across the dominsnt water wave direction. We call these two cases the upwind~downwind
and crosswind directions respectively. In the integration, we divide (44) by two and
assume the spectrum exists over all space instead of over only the forward wind half.
This is necessary because at a given instant, the sea profile will appear "frozen"
to a radio wave, and it will not be possible to tell from this profile whether the
waves are moving forward or backward.

Figures 4 and 5 show the curves of the resistive (solid lines) and reactive
(dashed lines) portions of the normalized effective surface impedance, 3. The sea
water is assumed to have a conductivity of 4mhos/meter, which is ths average between
the winter and summer values in the Atlantic. The curves indicate that the most
severa changes in surface impedance occur for a radio wave propagating in the direction
of the dominant ocean waves (i.e., across the corrugations), as one would expect.
These curves are really only valid out to frequencies and wind speeds such that
32 <« 1,* since this 18 one of the assumptions of the analysis., For example, the
curves could be used up to s frequency of about 30 MHz with a wind speed of 25 knots.

3, The Phillips Spectrum

Ocean-wave data gathered in recent years have led many oceanographers to
search for an alternative to the Neumann-Pierson spectrum, l’hilupnl'7 and Munkl"a
have presented convincing evidence to show that the spatial spectrum should
behave as (p? + q?)~?, instead of the (p? + q°)~¥+ dependence of Equation (44) for
large 1:'a + q’. More important, however, measurements show that the lower-end cutoff
is much more pronounced than the artificial exponential factor attached to the
Neumann~Pierson model in (44). Thirdly, slope measurements by Cox and Munkl.9 show
that the spectrum is much closer to being isotropic than the cosine-squared direction-

ality of (44). Hence, they suggest the following spectrum‘ﬂ

*do? = 3/2 ¢ i& (n/2)¥3 (U/28)"
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W(p,q) = ;Grlf;_n—qr)-r ' (45)

vhere B = 0,005, The spectrum is identically zero for Jp’ + q’ < 8/U? and also in
the half-space from which the wind is coming. The cutoff exhibited by (45) is much
sharper than that of (44).

We use (45) in a8 numerical evaluation of (41), and the results are shown
in Figure 6. As before, we divide (45) by two since the "frozen" surface profile
must produce a symmetric spectrum about the origin, For (45), the mean-square height
is g = % B U*/g?, Since the curves are meaningful only for k30® << 1, they can be
used for frequencies up to about 40 MHz with a wind speed of 25 knots. Again, the

conductivity of the sea 1s taken as 4 mhos/meter.

In comparison, the upwind-downwind impedances from the Neumann-Pierson spec-
trum are the largest. The impedances from the Phillips spectrum are reasonably close
to those for the upwind-dowrwind direction with the Neumann-Pierson spectrum. Those
for the crosswind direction of the Neumann-Pierson spectrum are the smallest, as
expected, Until experimental evidence is obtained, we believe that the Phillip's
impedances are perhaps the best estimate of the three.

F, Basic Transmission Loss Calculations

In the spirit of Wait's analyaesaa, we can use the effective (or equivalent)
impedance, K, in the integrals for ground-wave propagation, To facilitate the
calculation, Berry and Chrisman of ESSA have prepared a computer program36 which
solves this integral for the field strength above a spherical earth. The program
selects one of three techniques for solving the integral, depending on whether the
observation point is clearly visible to the source, in the penumbra, or in the deep
shadow, 1In the visible region, a saddle-point evaluation is employed. In the
penumbra, the computer does a complex numerical integration around a contour encloaing
the poles of the integrand, In the deep shadow region, the residue series is used; it
involves Fock's forms of the Airy functions and their roots rather than the Hankel
functions of one-third order, as used by Bremmer and van der Pol, The computer output
has been checked against Norton's curves and also against the known solutions in the

visible region, and the results agree.
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We employ this computer program to account for sea-state effects with the
following minor modifications: (1) we alter the input format so that lurfaco
impedance, K; can be used rather than conductivity and dielectric constant, and
(ii) we add another variable to the output, basic transmission loss, Lb.

Basic transmission loss 18 a concept widely publicized by Nortonso’SI in
the 1950's, Formally, it is defined as
P .
L, = 10 Logyo (52 (46)
rd .
where l’:1 is the power transmitted by an isotropic radiator and Pri is the power

received by an isotropic radiator. In a simple communication problem, one must merely
subtract out the free-space antenna gains (in dB) in order to determine the overall
power loss., For example, the basic transmission loss between two points in free

space separated by distance d 18 10 Logyo (47d/2)?; if the same two points are located
above a flat, perfectly conducting ground plane, the 4 is replaced by 2 in the
parentheses. The presentation of ground-wave attenuation in the form of basic trans-
mission loss appears to be more readily interpretable and useful than many of the
earlier ground-wave normalizations (e.g., unity electric dipole, 1 kW transmitted
power, field strength one mile from the transmitter, etc.). Examples illustrating

the application of these basic transmission loss curves will be provided in the next

section,

For reference, we show curves of basic transmission loss just above a per-
fectly smooth, perfectly conducting planar surface in Figure 7, as a function of range,
The values for loss shown are essentially 6 dB lower than the loss through free space
because the vertically polarized field radiated by an isotropic source on the surface
is twice as large with the plane present. Figure 8 shows the basic transmission loss

over a perfectly smooth spherical sea vs range. These curves were computed from the

ESSA ground-wave program, using cr = 80, 0 = 4 whoa/meter, and effective earth radius
= 4/3 actual earth radius, The former conductivity is typical of sea water in the
Atlantic ocean, The curves are calculated for frequencies spanning the HF and lower
VHF regions, At short ranges, the curves of Figure 8 coincide with those of Figure 7,

as they should,
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Basic Tronsmission Loss , L, , dB

Range, kilometers

Figure 8. Basic Transmission Loss Acrcss the Ocean Between
Points at the Surface of Smooth Spherical Earth.
Conductivity is 4 mhos/meter and an Effective
Earth Radius Factor of 4/3 is Assumed.
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To clearly show the effects of sea state and separate them from the normal
attenuation experienced by a ground-wave above a smooth spherical sea, we compute
the difference between Lb for the smooth sea, as shown in Figure 8 and Lb for the rough
sea, The latter Lb for the rough sea 1is computed from the ESSA program using the
values of A (surface impedance) obtained earlier, accounting for sea state. The
difference in transmission losses batween the smooth and rough sea is termed Lygs
and shown in Figures 9 through 32, Again, the conductivity of the sea water is
taken as 4 whos/meter and the effective earth radius factor (accounting for refractiv-
ity) is 4/3. The source and receiver are both assumed to be located at the surface.
Eight Zrequencies are selected (3,5,7,10, 15, 20, 30, and 50 MHz) which span the HF
and lower VHF regfon. Figures 9 through 16 represent the Neumann-Pierson oceen
spectrum for propagation in the upwind~-downwind direction; Figures 17 through 24
use the same spectrum, but for propagation in the crosswind direction. Finally Figures
25 through 32 present results for the isotropic version of the Phillips ocean spectrum,

Pigures 33 through 42 show a profile of basic transmission loss to various
points on and above the earth's surface. The source is assumed to be located at the
surface, The first number at each grid point represents the transmission loss when
the sea is perfectly smooth, while the second number represents the transmission loss
for Sea State 5 (25 knot wind) using the Phillips spectrum.

vV, EXAMPIES OF THE USE OF THE GRAPHS

A, Surface-to=Surfice Communication Problem

A shore station with an array antenna 1s to communicate with a ship 300 km
avay on a frequency of 10 MHz, The shore-based array has an equivalent free-space*
gain of Gt = 17 dB and the shipboard antenna has a £reo-space* gain of G. = 6 dB
when the two beams are optimally aligned. The shore station transmits an average
power of 1 kW, We are to find the total power at the receiver terminals before
amplification for (a), a smooth sea, and (b), a sea generated by a 25-knot wind,

*This means that the gains are measured or calculated as though the antenna were
isolated in free spsce rather than being located over a highly conducting ground.

SATTELLE MEMORIAL INSTITUTE - COLUMBUS LABORATORIES
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Range, kilometers

Added Transmission Loss Due to Sea State at 7 MHz.

Antennas are Located Just Above Surface.

Figure 19,

Neumann-Pjerson Ocean-Wave Spectrum with Propagation in Crosswind Direction.
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Antennas are Located Just Above Surface.

Neumann-Pierson Ocean-Wave Spectrum with Propagatios in Crosswind Direction.

Added Transmission Loss Due to Ses State st 20 MiHz.

Figure 22.
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Antennss are Located Just Above Surface.

Neumann-Pierson Ocean-Wave Spectrum with Propagation in Crossvind Direction,

Raonge , kilometers

Added Transmission Loss Due to Sea State at 30 Miz.

FIGURE 24,
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Figure 26.
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Range, kilometers

Added Transmission Loss Due to Sea State at 7 MHz.
Phillips Isotropic Ocean-Wave Spectrum.

Antennas are Located Just Above Surface.

Figure 27.
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Antennas are located Just Above Surface.

Range, kilometers

Added Transmission Loss Due to Ses State at 10 MHz.

Phillips Isotropic Ocean-Wavé Spectrum.

Figure 28.
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The total loss is given as

P

t
10 Logyo ;: - Lb - G: - G' . 47

From Figure 8, we find that at 300 km, Lb = 121.8 dB for a smooth sea; using Figure 28
we note that this increases to 132.7 dB for a sea driven by & 25-knot wind. Hence,
L - Gt - Gt = 98,8 dB and 109.7 dB for these two sea conditions. Thus, for Pt =1 kW
(average), Pr ® 1.3 X 10~ Watts (average) when the sea is calm, but drops to P =

1.1 x 10°® Watts (average) in rough seas produced by‘a 25<knot wind,

B, Surface-to-Air Communication Problem

Here let us consider ajship—to-air communication application, The frequency
is 20 MHz, We wish to determine the signal power received by an aircraft at 500 meters
altitude (about 1500 feet) and 270 km away from the ship during calm sea conditions
for 500 watts traensmitted power. Furthermore, we wish to estimate how much higher .
the plane must fly 2t that range to receive the same signal power when the sea is
aroused by a 25 knot wind, Possible ionospheric reflections are not to be included
in the signal estimates, The aircraft free-space antenna gain is about 6 dB,

For the smooth-sea problgm, we employ Figure 40 to find the basic trans-
mission between two isotropic sources, one located on the surfice and the other at
500 meters altitude and 270 km range. This is given by the first number at the
appropriate grid point on the chart, i.e., Lb = 145,7 dB, Then using Equation (47),
we find that the received power will ba P_ = 1.35 X 10722 vatts,

At that same altitude, we see from the second number at the same grid point
that the transmission loss increases to 153.9 dB when the sea is fully aroused by a
25 knot wind. This 8,2 dB drop in received signal, however, can be recovered by
climbing in altitude to the next grid point (i.a., 1000 meters or 3000 feet), at which
the loss drops back to 145.1 dB, near the original 145.7 dB figure for the smooth

Sea,
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VI, SUMMARY

This report has had one principal purpose throughout: to derive some

estimates of the effects of sea state on ground-wave propagation at HF and VHF,

At the outset 'o‘f‘ the analysis it was established that the only truly applicable
boundary condition is. the Leontovich, or impedance boundary condition. This

boundary condition, when applied to the sea, correctly accounts for the slight losses
associated with the finite water conductivity., With this boundary condition, the
derivation followed the classical statistical boundary perturbation approach
developed by Rice, The éffective surface impedance accounting for the roughness

was derived in this manner for a vertically polarized wave which appears to propsgate
~locally over the surface at the pseudo-Brewster angle., Since the ground wave
propagates locally at this angle, the effective surface impedance thus derived can
be used in any of the conventional treatments of radiation and propagation over a
spherical earth with an impedance boundary. -

The effective surface impedance obtained here is seen to consist of two
terms: one which is the impedance of a otherwise smooth planar surfaee of ses water,
and the second which is due te the roughness height spectrum of the ocesan waves.
This latter term preserves the conductivity dependence, and the error involved in
sssuming a perfectly conducting surface can thus be clearly seen. The increase in
the surface impedance due to the roughness is due largely to two phenomens: the
resistance incresse is caused by removal of energy by Bragg scatter from the ground
wave, The inductive reactance increase is due to the shorter roughness wavelengths
which do not scatter, but produce evanescent modes near the surface. The latter
phenomenon is identical to that behind the use of short-period corrugations to "trap"
energy near guiding, slow-wave structures,

The analysis presented has emphasized the electromagnetic derivation.
No attempt was made to analyze or improve the oceanographic models for the swa height
spectrum, In order to obtain estimates of sea state effects, two commonly seen
ocean~wave spectra models were used: the Neumann-Pierson and the Phillips spectrum.
The effective surface impedance based on these two models was numerically calculated
for various frequencies and wind conditiona. Finally, we used these surface impedances
in a standard program to compute the basic transmission loss across the sea vs range
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for various frequencies and winds, Of the two ocean-wave models, it is believed that
the Phillips spectrum is somewhat more justified than the Neumann-Pierson directional
model,

To illustrate how these curves can be applied to communication problems we
traced through some sample problems., The curves can also be applied to radar

applications in a straightforward manner,

VII, CONCLUSIONS

Wind speed and the resulting ocean roughness will definitely affect the
propagation of a ground wave in the HF/VHF regions, This roughness effect is
generally negligible below a frequency of 3MHz, At 15 MHz and a range of 100 miles,
the received signal over the Atlantic is shown to vary as much as 15 dB due to sea
state. Above about 50 MHz and for wind speeds greater than 25 MHz, the techniques
derived here are no longer valid because of the assumptions inherent in the

analysis,

Any deviations of measured propagation loss from that predicted by our
curves are not believed due to any shottcomings of the electromagnetic analysis.

They are due rather to the empirical ocean-wave spectra models used here. Reliable
directional spectra, as required by our equations, have not been measured in
sufficient detail by oceanographers to permit the establishment of an empirical

model, In addition, the only isotropic spectra models available are based on wind-
driven seas and do not include the effects of swell generated by storms in other areas.
There is at present no reasonable estimate of the error resulting from this neglect of
swell,

Measurements of ground-wave losses over the sea are in progress and results
should be available for comparison in the near future. As these measurements are
being made, Raytheon is also recording the sea conditions for corzelation with the
signal strength, Along with their measurements of radar sea clutter, this data could,

as a by=product, provide welcome information about the ocean-wave spectrum.
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APPENDIX

Ground-Wave Bibliography

The subject of ground-wave propagation across the earth is one of the most
widely treated technical subjects of this century, We attempt to list here most of
the principal open-literature publications relating to this subject. We apologize
for omissions, of which there are certainly many. The list here has invariably
failed to include many reports, even of an unclassified nature, as well as many
foreign articles on the subject,

The bibliography does not include treatments of the effects of the ionosphere

or atmosphere. Nor is ground scatter (clutter) considered,

So as to show the historica]l evolution of the subject, wa break the biblio-
graphy into decades. All of the publjications generated within a given decade are
then arranged alphebetically by author,

Before 1911

Epstein, P., "The Propagation of Waves in Wireless Telegraphy, Taking Into Consider~

ation the Nature of the Ground", Jahrbach d, Drahtlosen Telegraphie, Vol 4, No 2,
pp 176-187 (December 1910).

Hack, F., "The Propagation of Electromagnetic Waves Over a Plane Conductor", Ann,
Phys. Lpz., Vol 27, p 43 (1908).

Koepsel, A., "Role of the Earth in Wireless Telegraphy", Dingler's Polytechn. Journal,
Vol 318, pp 385-388 (June 20, 1903).

Nickolson, J, W., "On the Bending of Electric Waves Round the Earth', Part [, Phil.
Mag., Vol 18, p 757 (1910).

Nickolson, J. W,, "On the Bending of Electric Waves Round the Earth", Part 11, Phil,
Mag., Vol 20, p 157 (1910).

Sommerfeld, A., '"The Propagation of Waves in Wireless Telegraphy", Ann. Physik, Vol 28,
p 665 (1909).

Sommerfeld, A., "The Propagation in Wireless Telegraphy", Jahrbach d. Drahtlosen
Telegraphie, Vol 4, p 157 (1910),

Sommerfeld, A., "Uber die Fortpfanzung e¢lectrodynamischer Wellen langs eines
Drahtes', Physik u, Chem., Vol 67, p 233 (1899),
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Zenneck, J., "Uber die Fortpflanzung ebener electromagnetisher Wellen langs einer
ebenen Leiterflache und ihrer Beziehung zur drahtlosen Telegraphie”, Ann. Physik,
Vol 23, pp 846-866 (1907).

"Marconi Signals Across the Atlantic", Elect. World, Vol 38, p 1023 (1901). Editorial
Comment.

1911-1920

Howe, G. W. 0., "On the Transmission of Electromagnetic Waves Through and Around the
Earth", Electrician, Vol 72, pp 484-486 (December 26, 1913).

Love, A. E. H., "Electric~wave Transmission over Earth's Surface", Roy. Soc., Phil.
Trans., Vol 215, pp 105-131 (1915).

MacDonald, H. M., "Electric Wave Transmission on the Earth's Surface", Roy. Soc.,
Proc,, Vol 92, pp 493-500 (August 1, 1916).

MacDonald, H. M., "Transmission of Electric Waves Round the Earth's Surface", Roy. Soc.,
Proc,, Vol 98, pp 216-222 (December 3, 1920).

Nickolson, J. W., "On the Bending of Electric Waves Round the Earth", Part I11, Phil.
Mag., Vol 21, p 62 (1911).
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Mag., Vol 21, p 281 (1911). ’
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pp 33-41 (March 1912).
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Physik, Vol 41, No 1, pp 191-208 (May 22, 1913).

Sommerfeld, A., "Ausbreitung der Wellen in der drahtlosen Telegraphie, Einfluss der
Bodenbeschaffenheit auf gerichtete und ungerichtete Wellenzuge'", Jahrbach d,

Drahtlosen Telegraphie, Vol 4, pp 157-176 (1911),

Sommerfeld, A., "Effect of the Earth's Curvature on Wireless Telegraphy", Jahrbach d,
Drahtlosen Telegraphie, Vol 12, pp 2-15 (June 1917),

Watson, G. N., "The Diffraction of Electric Waves by the Earth", Proc. Roy. Soc.
(London), Vol 95A, p 83 (1919),
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Vol 95A, p 546-563 (1919).
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Weyl, H., "Ausbreitung elektromagnetischer Wellen uber einem ebenen Leiter", Ann. Plys.
Lps., Vol 60, p 481 (1919).
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Zenneck, J., Wireless Telegraphy, McGraw Hill Book Company, New York (1915), 249 pp.

1921-1930

Ballantine, S., "On the Optimum Transmitting Wavelengths for a Vertical Antenna Over
Perfect Earth", Proc. IRE, Vol 12, p 833 (1924).
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